Conclusions
Largest theoretical and sustainable potentials are manure and forest wood. The total sus-
tainable potential of primary energy from biomass is 97 PJ/y. (52 PJ/y. woody biomass and
47 PJ/y. non-woody biomass) equivalent to 2,100,000 tons crude oil or 8.3% of Switzerland’s
gross energy consumption. 53 PJ/y. are used already. The remaining sustainable potential
is 44 PJ/y. (14 PJ/y. woody biomass and 30 PJ/y. non-woody biomass) for the whole country.
The various biomass resources show different regional distributions as the example of ma-
Sure potential demonstrates. Therefore, decisions for their energetic utilization and the
technical infrastructure should refer to the local analysis of the study.

Cantonal Sustainable Manure Potential (PJ/year)

<table>
<thead>
<tr>
<th>Potential Range</th>
<th>Cantons Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 – 0.5</td>
<td>15</td>
</tr>
<tr>
<td>0.5 – 1.0</td>
<td>21</td>
</tr>
<tr>
<td>1.0 – 1.5</td>
<td>12</td>
</tr>
<tr>
<td>1.5 – 3.0</td>
<td>4</td>
</tr>
<tr>
<td>3.0 – 6.0</td>
<td>1</td>
</tr>
</tbody>
</table>

Publication
Thees, O.; Burg, V.; Erni, M.; Bowman, G.; Lemm, R., 2017; Biomassepotenziale der Schweiz für die energetische Nutzung. Schlussbericht SCCER Biosweet, WSL Ber. 57: 299 S.

Research Contact
Vanessa Burg
Swiss Federal Institute for Forest, Snow and Landscape Research WSL
vanessa.burg@wsl.ch

Technology Transfer Contact
Markus Zeifang
markus.zeifang@psi.ch
+41 (0)56 310 50 92
www.sccer-biosweet.ch
Conclusions

Largest theoretical and sustainable potentials are manure and forest wood. The total sus-
tainable potential of primary energy from biomass is 97 PJ/y. 29 PJ/y. woody biomass and
47 PJ/y. non-woody biomass) equivalent to 2,100,000 tons crude oil or 8.3% of Switzerland’s
gross energy consumption. 53 PJ/y. are used already. The remaining sustainable potential
is 44 PJ/y. (14 PJ/y. woody biomass and 30 PJ/y. non-woody biomass) for the whole country.
The various biomass resources show different regional distributions as the example of ma-
nure potential demonstrates. Therefore, decisions for their energetic utilization and the
technical infrastructure should refer to the local analysis of the study.

Cantonal Sustainable Manure Potential (PJ/year)

<table>
<thead>
<tr>
<th>Range</th>
<th>Canton</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 - 0.5</td>
<td></td>
</tr>
<tr>
<td>0.5 - 1.0</td>
<td></td>
</tr>
<tr>
<td>1.0 - 1.5</td>
<td></td>
</tr>
<tr>
<td>1.5 - 3.0</td>
<td></td>
</tr>
<tr>
<td>3.0 - 6.0</td>
<td></td>
</tr>
</tbody>
</table>

Publication

Thees, O.; Burg, V.; Erni, M.; Bowman, G.; Lemm, R., 2017: Biomassepotenziale der Schweiz für die energetische Nutzung, Schlussbericht SCCER Biosweet, WSL Ber. 57: 299 S.

Research Contact

Vanessa Burg
Swiss Federal Institute for Forest, Snow and Landscape Research WSL
vanessa.burg@wsl.ch

Technology Transfer Contact

Markus Zeifang
markus.zeifang@psi.ch
+41 (0)56 310 50 92
www.sccer-biosweet.ch

Biomass Potentials for Energetic Use
Assessment of Swiss Biomass Resources
Current Domestic Biomass Potentials in Switzerland

<table>
<thead>
<tr>
<th>Feedstock Definition</th>
<th>Theoretical Potential (T)</th>
<th>Sustainable Potential (S)</th>
<th>Additional Potential (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood from landscape maintenance</td>
<td>9.4 / S 4.8 / A 2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial bio-waste</td>
<td>13.6 / S 2.7 / A 0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic household garbage</td>
<td>6.0 / S 3.9 / A -2.1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green waste</td>
<td>4.3 / S 5.8 / A 3.3*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sewage sludge</td>
<td>4.9 / S 4.9 / A 1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal manure</td>
<td>48.8 / S 26.9 / A 24.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural crop by-products</td>
<td>14.9 / S 2.6 / A 2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial wood residues</td>
<td>24.0 / S 7.6 / A 0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste wood</td>
<td>14.4 / S 11.7 / A 2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest wood</td>
<td>107.5 / S 26.1 / A 9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green waste</td>
<td>4.3 / S 5.8 / A 3.3*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Feedstock Definitions of Non-Woody and Woody Biomasses

Sewage sludge: Organic matter from central water treatment plants.

Animal manure: Liquid manure and dung from livestock.

Green waste: Separately collected biogenic waste from households as well as non-ligneous waste from public landscape maintenance.

Organic part of municipal waste: Organic fraction within household and residential refuse.

Industrial waste: Organic residues from food industry, catering, retailers, paper production, tobacco industry, pharma-industry and textile industry.

Agricultural crop by-products: Residues left on field after regular harvests and intermediate crops.

Forest wood: All types of forest wood designated exclusively for energy purposes.

Waste wood: Wood from buildings renovation, furniture, pallets.

Industrial wood residues: Production waste from companies that treat and process raw timber.

Wood from landscape maintenance: Ligneous fraction from public landscape maintenance and open field.

Organic household garbage: Organic fraction within household and residential refuse.

Green waste: Separately collected biogenic waste from households as well as non-ligneous waste from public landscape maintenance.

Sewage sludge: Organic matter from central water treatment plants.

Animal manure: Liquid manure and dung from livestock.

Agricultural crop by-products: Residues left on field after regular harvests and intermediate crops.

Industrial waste: Organic residues from food industry, catering, retailers, paper production, tobacco industry, pharma-industry and textile industry.

Agricultural crop by-products: Residues left on field after regular harvests and intermediate crops.

Forest wood: All types of forest wood designated exclusively for energy purposes.

Waste wood: Wood from buildings renovation, furniture, pallets.

Industrial wood residues: Production waste from companies that treat and process raw timber.

Wood from landscape maintenance: Ligneous fraction from public landscape maintenance and open field.

*Numbers include shift through improved sorting.
One Consistent Approach for All Biomass Resources

The study covers all domestic woody and non-woody biomass in Switzerland using the same scientific approach:

Calculations based on survey data provide the theoretical gross potential. Then, technical, environmental, economic, legal, and political restrictions are considered to estimate the sustainable potential for energetic use. Finally, the already used potential is subtracted to calculate the remaining available bioenergy potential.

The whole process runs at high regional resolution enabling results from local to national aggregation. Various scenarios reflect possible trade-offs and synergies until 2050.

Significant Data for Planning and Allocation of Resources

The comprehensive data on all biomass resources, plus their characteristics, availability, usage, estimated costs and regional distribution support efficient decisions on technology development and deployment as well as on site location.

An optimized selection of the conversion technology and installation site for the sustainable biomass supply can significantly reduce the cost of the final bioenergy product. At the same time efficient usage of the biomass is ensured.

Feedstock Definitions of Non-Woody and Woody Biomasses

- **SEWAGE SLUDGE:** Organic matter from central water treatment plants.
- **ANIMAL MANURE:** Liquid manure and dung from livestock.
- **GREEN WASTE:** Separately collected biogenic waste from households as well as non-lignous waste from public landscape maintenance.
- **ORGANIC PART OF MUNICIPAL WASTE:** Organic fraction within household and residential refuse.
- **INDUSTRIAL WASTE:** Organic residues from food industry, catering, retailers, paper production, tobacco industry, pharma-industry and textile industry.
- **AGRICULTURAL CROP BY-PRODUCTS:** Residues left on field after regular harvests and intermediate crops.
- **FOREST WOOD:** All types of forest wood designated exclusively for energy purposes.
- **WASTE WOOD:** Wood from buildings renovation, furniture, pallets.
- **INDUSTRIAL WOOD RESIDUES:** Production waste from companies that treat and process raw timber.
- **WOOD FROM LANDSCAPE MAINTENANCE:** Ligneous fraction from public landscape maintenance and open field.

Current Domestic Biomass Potentials in Switzerland

Feedstock Definitions

- **Animal manure**
 - T: 48.8 / S: 26.9 / A: 24.3
- **Agricultural crop by-products**
 - T: 14.9 / S: 2.6 / A: 0.2
- **Industrial wood residues**
 - T: 24.0 / S: 7.6 / A: 0.0
- **Industrial bio-waste**
 - T: 13.6 / S: 2.7 / A: 0.7
- **Waste wood**
 - T: 14.4 / S: 11.7 / A: 2.5
- **Organic household garbage**
 - T: 6.0 / S: 3.9 / A: -2.1*
- **Green waste**
 - T: 4.3 / S: 5.8 / A: 3.3*
- **Sewage sludge**
 - T: 4.9 / S: 4.9 / A: 1.4

* Numbers include shift through improved sorting
One Consistent Approach for All Biomass Resources

The study covers all domestic woody and non-woody biomass in Switzerland using the same scientific approach:

Calculations based on survey data provide the theoretical gross potential. Then, technical, environmental, economic, legal, and political restrictions are considered to estimate the sustainable potential for energetic use. Finally, the already used potential is subtracted to calculate the remaining available bioenergy potential.

The whole process runs at high regional resolution enabling results from local to national aggregation. Various scenarios reflect possible trade-offs and synergies until 2050.

Significant Data for Planning and Allocation of Resources

The comprehensive data on all biomass resources, plus their characteristics, availability, usage, estimated costs and regional distribution support efficient decisions on technology development and deployment as well as on site location.

An optimized selection of the conversion technology and installation site for the sustainable biomass supply can significantly reduce the cost of the final bioenergy product. At the same time efficient usage of the biomass is ensured.

Current Domestic Biomass Potentials in Switzerland

Feedstock Definitions of Non-Woody and Woody Biomasses

SEWAGE SLUDGE: Organic matter from central water treatment plants.

ANIMAL MANURE: Liquid manure and dung from livestock.

GREEN WASTE: Separately collected biogenic waste from households as well as non ligno-wood from public landscape maintenance.

ORGANIC PART OF MUNICIPAL WASTE: Organic fraction within household and residential refuse.

INDUSTRIAL WASTE: Organic residues from food industry, catering, retailers, paper production, tobacco industry, pharma industry and textile industry.

AGRICULTURAL CROP BY-PRODUCTS: Residues left on field after regular harvests and intermediate crops.

Forest wood

T 107.5 / S 26.1 / A 9.0

Agricultural crop by-products

T 14.9 / S 2.6 / A 0.0

Industrial wood residues

T 24.0 / S 7.6 / A 0.0

Industrial bio-waste

T 13.6 / S 2.7 / A 0.0

Waste wood

T 24.0 / S 7.6 / A 0.0

Organic household garbage

T 6.0 / S 3.9 / A -2.1*

Wood from landscape maintenance

T 9.4 / S 4.8 / A 2.5

Green waste

T 4.3 / S 5.8 / A 3.3*

Primary energy (PJ/year)

- Theoretical potential
- Sustainable potential
- Additional potential

* Numbers include shift through improved sorting
Conclusions

Largest theoretical and sustainable potentials are manure and forest wood. The total sustainable potential of primary energy from biomass is 97 PJ/y. (50 PJ/y woody biomass and 47 PJ/y non-woody biomass) equivalent to 2 100 000 tons crude oil or 8.3% of Switzerland’s gross energy consumption. 53 PJ/y are used already. The remaining sustainable potential is 44 PJ/y. (14 PJ/y woody biomass and 30 PJ/y non-woody biomass) for the whole country. The various biomass resources show different regional distributions as the example of manure potential demonstrates. Therefore, decisions for their energetic utilization and the technical infrastructure should refer to the local analysis of the study.

Cantonal Sustainable Manure Potential (PJ/year)

<table>
<thead>
<tr>
<th></th>
<th>0.0 – 0.5</th>
<th>0.5 – 1.0</th>
<th>1.0 – 1.5</th>
<th>1.5 – 3.0</th>
<th>3.0 – 6.0</th>
</tr>
</thead>
</table>

Publication

Thees, O.; Burg, V.; Erni, M.; Bowman, G.; Lemm, R., 2017: Biomassepotenziale der Schweiz für die energetische Nutzung. Schlussbericht SCCER Biosweet, WSL Ber. 57: 299 S.

Research Contact

Vanessa Burg
Swiss Federal Institute for Forest, Snow and Landscape Research WSL
vanessa.burg@wsl.ch

Technology Transfer Contact

Markus Zeifang
markus.zeifang@psi.ch
+41 (0)56 310 50 92
www.sccer-biosweet.ch

Biomass Potentials for Energetic Use

Assessment of Swiss Biomass Resources